Finite nonabelian 2-groups in which any two noncommuting elements generate a subgroup of maximal class
نویسندگان
چکیده
منابع مشابه
Finite p - Groups which Have a Maximal Subgroup is Full - Normal ( p > 2 )
Let G be a finite p-group, M is a subgroup of G. M is called fullnormal if for any subgroup K of M, we have K G. In this paper, We determine the structure of finite p-groups which have a maximal subgroup is full-normal(p > 2). Mathematics Subject Classification: 20D10, 20D15
متن کاملFinite Groups With a Certain Number of Elements Pairwise Generating a Non-Nilpotent Subgroup
متن کامل
CLASSIFYING FUZZY SUBGROUPS OF FINITE NONABELIAN GROUPS
In this paper a rst step in classifying the fuzzy subgroups of a nite nonabelian group is made. We develop a general method to count the number of distinct fuzzy subgroups of such groups. Explicit formulas are obtained in the particular case of dihedral groups.
متن کاملGroups in which every subgroup has finite index in its Frattini closure
In 1970, Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $IM$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. A group $G$ is said to have the $FM$...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2006
ISSN: 0017-095X
DOI: 10.3336/gm.41.2.09